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The purpose of this memo is to lay out the uncertainties associated with the
measurement of density of Be ablators by the weigh and volume method.  I am
counting on the readers to point out any faulty assumptions about the techniques or
uncertainties associated with them.  Based on the analysis presented below we should
expect that 30 µm thick shells will have an uncertainty in the measured density of about
2% of the value, coming more or less equally from the mass and volume measurement.
The uncertainty is roughly inversely proportional to the coating thickness, thus a 60 µm
walled shell would result in a 1% uncertainty in the density.

Let me quickly go through the error analysis involved when making density
measurements on Be shells.  Clearly the density is

ρ = m V/ (1)

where m is the mass of the Be and V is its volume.  Thus the uncertainty in the density,
δρ ρ/ , is
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where δm m/  and δV V/  are the relative uncertainties in the mass and volume
measurements.

The measurement of the mass is relatively straightforward.  If the mandrel has
been removed it is simply the mass of the shell, if the mandrel has not been removed
(and this is generally the case) then one needs to know the mass of the plastic mandrel.
In some cases we have known this (or at least think we do) because a relatively few
mandrels were coated at one time, and their diameters, which are measured
beforehand, are different enough so that after coating the shells can be associated with
specific mandrels.  However what is missing here is any mass loss of the mandrel
during the initial stages of coating when the mandrels are exposed to relatively high
temperatures and gaseous decomposition products may diffuse away.  Thus in this case
the mass we might use is an upper bound to the mass of the mandrel.  Since we are
subtracting this from the mass of the coated shell to get the Be mass, the result will be
lower than the actual Be mass by the amount of the mandrel decomposition.  We
currently have no good estimate for the mass of the mandrel lost during the initial
stages of coating.  There is evidence, however, that changes are taking place, since we
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have seen increases in diameter of the shells during coating (this might occur without
mass loss of course).  To get some idea of the magnitude of this "error" lets look at a
typical shell.  The mandrel weight is perhaps 180 µg.  If this is coated with 30 µm of Be,
the composite mass might be 850 µg, thus the mass of Be would be by difference 670
µg.  But if 10 µg of mandrel were lost the correct mass would be 680 µg, or about 1.5%
higher.  Clearly this error increases with thinner coatings, and decreases with thicker
coatings.  And of course we have no reason to expect 1 µg, 10µg, or more of loss.  There
may be some experiments that we can do to quantify this, and maybe some data
already exists to put some bounds on it.  The rate of Be deposition is about 1 µm/h,
probably the loss stops if there is 10 µm of Be on the shell,1 and the temperature
reached by the shell is probably not more than 250 °C.  There probably is (or certainly
could be) TGA mass loss data on bare mandrels heated to 250 °C that could be used to
bound the effect.

The situation when individually uncharacterized mandrels are used is certainly
worse than this, but under the best of circumstances not much worse.  Evelyn
characterizes the mass of a batch (as received from GA) by weighing a number of
shells.2  Typically mandrels within a batch vary in mass by about 10 µg.  See Figure 1
for the characterization data on 6 batches.  The standard deviations for the batches K, P,
and Q were 2.9, 3.3, and 4.1 µg.  Thus the uncertainty in the mass if a single batch is used
is about 5-7 µg (half of the range of measured shells or about 2 standard deviations) in
the mandrel mass if the batch average mass is used.  Thus the effect on the Be mass is
about 0.75% for a 30 µm coating.
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Figure 1.  Distribution of masses within a batch.
                                                
1 Some data from stave Letts showed that Be shell with 10 µm of coating and no drilled hole lost mass
when heated in a furnace to 500 °C.  Those with 20 µm of coating did not.
2 Of course other batch characteristics such as diameter, out of round and wall thickness are also
measured.
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One last small correction that should be made in the mass measurement is that
there is a buoyancy correction for the masses measured for Be coated shells because
they are evacuated.  The mass of the equivalent volume of air is given by
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where ri is the inner radius (~0.1 cm), and Mair is the average molecular weight of air
(~29 g/mol).  At 1 atm and 25 °C this amounts to about 5 µg, the mass that should be
added to the mass measured for the Be shell.

Thus the situation for mass is not as good as we thought, at least if the mandrel is
still within.  It looks like the δm m/  term in eq 2 may be approaching 1% for thin (30
µm) shells based on average mandrel mass if the mandrels used were all from the same
batch.  However in the "Christmas" run both batches P and Q were used, and these
differed in average mass by nearly 43 µg, thus the mandrel mass in a given shell is
really unknown.  Using the average of the two batches insures that one will be off by
about 20 µg, some high and some low.  This represents a 3% relative error in the mass
measurement if the shell were 30 µm thick, however since they are ~100 µm thick the
uncertainty this brings to the mass measurement is still about 1%.  The diameters of the
P and Q batches were about the same, so this doesn't allow for any sorting. I suppose
one could still do sorting as follows.  For each shell determine the density with the
mandrel mass equal to the average (193 µg) plus and minus the 21 µg "error".  Looking
at the results one might be able to determine whether the "plus" or "minus" (and thus
the batch) was correct.  But this is probably not worth the time, and the "Christmas" run
was graded, which is another problem (though not serious as shown below).

Though not very useful for quick turn around, it might be worth doing some
densities on capsules that have had their mandrels burned out.  For these the mass
measurement is good to about 0.2 µg, which for a 30 µm thick coating is 0.03%.  One
doesn't need to worry about the mass loss of the hole, a 6-µm-diameter hole through a
30-µm wall represents less than 10-3 % of the mass.

The situation for the volume measurement is as follows.  Currently the best way
to make this measurement is to measure the outer diameter, d, of the capsule by RACI
and then to break the capsule open and measure the wall thickness, w, by SEM.  In this
way the Be capsule volume is given by
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Thus the relative uncertainty in the volume is
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or since typically d w�
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With the SEM we can make the wall thickness measurement to perhaps 0.2 to 0.3
µm.  Wall thickness uniformity should not really be an issue since by process the wall
ought to be very uniform (assumes no sticking, etc).  So several measurements of wall
thickness probably say more about the uncertainty of the measurement than
differences in the wall thickness.  We think that the SEM picture allows measurement of
the wall thickness to say 0.3 µm, or for a 30 µm wall about 1%.  Several measurements
averaged would decrease this number somewhat.  The uncertainty in the diameter is a
different matter.  The shells are typically out or round by a few µms.  This is say 2 µm
out of 2000 µm or about 0.1%.  Evelyn does 3 orthogonal views, ellipse fits to each, and
the out-of-round is the difference between the largest major axis and the smallest minor
axis.  These shells are pretty round!!  The average diameter is taken as the average
value from these 6 axes.  The error introduced in using this average value and a
spherical model to determine the volume is certainly tiny.  As an example, in 2-D a circle
with diameter of 2000 µm has an area of 3141593 µm2. An ellipse with major and minor
axes of 2005 and 1995 µm (a 2-D out of round of 10 µm) has an area of 3141573 µm2, a
0.0006% difference from the value one gets by using the average diameter and the
equation for a simple circle.  Further Evelyn's diameter measuring method involves
first using a 2 mm silicon nitride ball bearing to calibrate the RACI exposure.  The ball
bearing is probably good to 0.1 µm, the calibration is good to 0.15 µm; thus we can
expect the measurement of each axes to be good to 0.3 µm, or δd d/  is about 0.015%.
Even if the uncertainty was 1.0 µm, the relative uncertainty would still be only 0.05%,
much less than the uncertainty in the wall measurement.

Thus it appears that the uncertainty in the volume is controlled by the wall
thickness measurement, and is the same order as that associated with the mass, if shells
from the same batch are coated.  The mass measurement (of capsules with mandrel)
under the best circumstances (i.e. no loss of mandrel mass due to decomposition) is
uncertain to about 1%.  The volume measurement is also uncertain to about 1% due to
the wall thickness measurement.  Thus a measured density value of 1.70 is uncertain to
about 0.04 g/cm3, or assuming a "full" density of 1.85 (pure Be) this means that the
sample is 91.9 ± 2.2% of full density, or 8.1 ± 2.2% porosity.  This is not too bad
precision, and probably an acceptable diagnostic.  Both of these estimates are for 30 µm
thick shells, in both cases the uncertainty drops linearly with the shell thickness (i.e. for
a 60 µm wall the uncertainties are about 0.5% each).

Not included in this analysis are the possibilities of determinant or constant
errors.  Does the SEM routinely over or under measure the wall thickness, does RACI
give the right value, which I guess means is the standard silicon nitride ball actually 2
mm? And is there mass loss of the mandrel on coating?
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Lastly lets look at what "full" density for Cu doped samples actually is.  The
specific gravity of pure Be is 1.848 and for pure Cu its 8.96 (both at 20 °C).3  Since
specific gravity is the ratio of the density of the material to the density of water, and the
density of water at 20 °C is 0.9982 g/cm3,4 the densities of Be and Cu are 1.845 and 8.94
g/cm3.  There are two ways we might compute the density of Cu-doped Be.  The first is
to assume that Cu atoms simply replace Be atoms, and the basic crystal structure
remain the same.  With this assumption the density of the composite is given by

density Cu-doped Be Atom fraction Be= × +1 845.
663 546

9 012

.

.
×







Atom fraction Cu (7)

Note that at an atom fraction of Cu equal to 1 (pure Cu) the resulting density is 13.01
g/cm3, clearly wrong - the crystal structure of pure Cu is not the same as Be and the Cu
atom is a bit bigger.  But at low atom fractions of Cu this is not a bad approximation.

The other approach one could take is a simple mixing rule, which might be
expressed as

density Cu-doped Be Atom fraction Be= × +1 845. 88 94. × Atom fraction Cu (8)

In Figure 2 I plot the two expressions for low atom fractions of Cu.  The difference
between the two is pretty small at the atom % Cu we are interested in - 1.884 versus
1.870 at 0.35 atom % Cu, 1.923 versus 1.895 at 0.70 atom % Cu.  My guess is that the
atom substitution method (eq 7, higher numbers) is more accurate.
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Eq. 6 - Atom substitution

Eq. 7 - Simple mixing

Figure 2.  Computed densities of Cu-doped Be
                                                
3 Handbook of Chemistry and Physics, 78th ed, pgs 4-5 and 4-9.
4 ibid., pg 6-5.
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I guess the last thing to outline is what we do with graded capsules.  At best by
these methods we can only get a composite density.  But we can calculate an expected
"full" target density if we know the individual layer thicknesses.  As an example lets
consider a capsule that has an OD of 2210 µm.  We then need to determine the
individual layer thicknesses - and make sure that these add up to the total thickness of
the deposited layer.  This might not be such a problem given a polished cross-section.
So lets assume for the sake of this example that starting from the outside we have 94
µm of pure Be, then 16 µm of 0.35 atom % Cu, followed by 55 µm of 0.70 atom % Cu,
then 6 µm of 0.35 atom % Cu, and finally 6 µm of pure Be.  This makes the total wall 177
µm thick.5  Lets number the layers starting from the outside as 1 through 5.   The
volume of the individual layers can be calculated as

V R t R ti i
i

i

i
i

i
= −









 − −














−

= =
∑ ∑

4

3 1
1

3

1

3

π 









(9)

where R is the outer radius of the capsule (2210/2 µm) and ti is the thickness of the ith
layer, t0 being equal to 0.  Given this notation the composite density of the shell in
terms of the densities of the layers (ρi) is
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Note that the units used for volume don't matter.  For the example given above the
composite density comes out to be 1.871 g/cm3.  The result is not very sensitive to the
measurement of layer thickness, if we take the Cu-doped layers as each being 1 µm
thicker and decrease the outer pure Be layer by 3 µm, the composite density only
changes by less than 0.001 g/cm3.  It is critical however, to get the total layer thickness
right, as it was for uniformly doped shells.

                                                
5 This is the original 300 eV design, see S. W. Haan, et al., "Update on the NIF Indirect Drive Ignition
Target Fabrication Specifications," Fusion Sci. and Technol. 45, 69 (2004).


